当前位置:

OFweek半导体照明网

散热技术

正文

散热问题持续困扰高功率白光LED的应用

导读: 就今天而言,白光LED仍旧存在着发光均一性不佳、封闭材料的寿命不长,而无法发挥白光LED被期待的应用优点。但就需求层面来看,不仅一般的照明用途,随着手机、LCD TV、汽车、医疗等的广泛应用积极的出现,使得最合适开发稳定白光LED的技术研究成果也就相当的被关心。

卢庆儒/DigiTimes.com

就今天而言,白光LED仍旧存在着发光均一性不佳、封闭材料的寿命不长,而无法发挥白光LED被期待的应用优点。但就需求层面来看,不仅一般的照明用途,随着手机、LCD TV、汽车、医疗等的广泛应用积极的出现,使得最合适开发稳定白光LED的技术研究成果也就相当的被关心。

■藉由提高晶片面积来增加发光量

期望改善白光LED的发光效率,目前有两大方向,就是提高LED晶片的面积,也就是说,将目前面积为1m㎡的小型晶片,将发光面积提高到10m㎡的以上,藉此增加发光量,或把几个小型晶片一起封装在同一个模组下。虽然,将LED晶片的面积予以大型化,藉此能够获得高多的亮度,但因过大的面积,在应用过程和结果上也会出现适得其反的现象。所以,针对这样的问题,部分LED业者就根据电极构造的改良,和覆晶的构造,在晶片表面进行改良,来达到50lm/W的发光效率。

例如在白光LED覆晶封装的部分,由於发光层很接近封装的附近,发光层的光向外部散出时,因此电极不会被遮蔽的优点,但缺点就是所产生的热不容易消散。而并非进行晶片表面改善后,再加上增加晶片面积就绝对可以一口气提昇亮度,因为当光从晶片内部向外散射时,晶片中这些改善的部分无法进行反射,所以在取光上会受到一点限制,根据计算,最佳发挥光效率的LED晶片尺寸是在7m㎡左右。

■利用封装数个小面积LED晶片,快速提高发光效率

和大面积LED晶片相比,利用小功率LED晶片封装成同一个模组,这样是能够较快达到高亮度的要求,例如,Citizen就将8个小型LED封装在一起,让模组的发光效率达到了60lm/W,堪称是业界的首例。

但这样的做法也引发的一些疑虑,因为是将多颗LED封装在同一个模组上,所以在模组中必须置入一些绝缘材料,以免造成LED晶片间的短路情况发生,不过,如此一来就会增加了不少的成本。对此Citizen的解释是,事实上对於成本的影响幅度是相当小的,因为相较于整体的成本比例,这些绝缘材料仅不到百分之一,并因可以利用现有的材料来做绝缘应用,这些绝缘材料不需要重新开发,也不需要增加新的设备来因应。

虽然Citizen的解释理论上是合理的,但是,对于较无经验的业者来说,这就是一项挑战,因为无论在良率、研发、生产工程上都是需要予以克服的。当然,还有其他方式可达到提高发光效率的目标,许多业者发现,在LED蓝宝石基板上制作出凹凸不平坦的结构,这样或许可以提高光输出量,所以,有逐渐朝向在晶片表面建立Texture或Photonics结晶的架构。例如德国的OSRAM就是以这样的架构开发出“Thin GaN”高亮度LED,OSRAM是在InGaN层上形成金属膜,之后再剥离蓝宝石。这样,金属膜就会產生映射的效果而获得更多的光线取出,而根据OSRAM的资料显示,这样的结构可以获得75%的光取出效率。



▲逐渐有业者利用覆晶的构造,来期望达到50lm/W的发光效率,由於发光层很接近封装的附近,发光层的光向外部散出时,因此电极不会被遮蔽。(资料来源:LEDIKO)

当然,除了晶片的光取出方面需要做努力外,因为期望能够获得更高的光效率,在封装的部分也是必须做一些改善。事实上,每多增加一道的工程都会对光取出效率带来一些影响,不过,这并不代表著,因为封装的制程就一定会增加更高的光损失,就像日本OMROM所开发的平面光源技术,就能够大幅度的提昇光取出效率,这样的结构OMROM是将LED所射出的光线,利用LENS光学系统以及反射光学系统来做控制的,所以OMROM称之为“Double reflection 光学系统”。

利用这样的结构,可将传统砲弹型封装等的LED所造成的光损失,针对封装的广角度反射来获得更高的光效率,更进一步的是,在表面所形成的Mesh上进行加工,而形成双层的反射效果,这样的方式,事实上是可以得到不错的光取出效率控制的。因为这样的特殊设计,这些利用反射效果达到高光取出效率的LED,主要的用途是针对LCD TV背光所应用的。

■封装材料和荧光材料的重要性增加

但如果期望用来作为LCD TV背光应用的话,那麼需要克服的问题就会更多了,因为LCD TV的连续使用时间都是长达数个小时,甚至10几个小时,所以,由於这样长时间的使用情况下,拿来作为背光的白光LED就必须拥有不会因为连续使用而产生亮度衰减的情况。目前已发表的高功率的白光LED,它的发光功率是一个低功率白光LED亮度的数十倍,所以期望利用高功率白光LED来代替萤光灯作为照明设备的话,有一个必须克服的困难就是亮度递减的情况。

例如,白光LED长时间连续使用1W的电力情况下,会造成连续使用后半段时间的亮度逐渐降低的现象,当然,不是只有高功率白光LED才会出现这样的情况,低功率白光LED也会存在这样的问题,只不过是因为,低功率白光因为应用的產品不同,所以,并不会因此特别突显出这样的困扰。

使用的电流越大,当然所获得的亮度就越高,这是一般对于LED能够达到高亮度的观念,不过,因为所使用的电流增加,因此所带来的缺点是,封装材料是否能够承受这样的长时间的因为电流所产生的热,也因为这样的连续使用,往往封装材料的热抵抗会降到10k/w以下。

高功率LED的发热量是低功率LED的数十倍,因此,会出现随着温度上升,而出现发光功率降低的问题,所以在能够抗热性高封装材料的开发上,就相对显的非常重要。

或许在20∼30lm/W以下的LED,这些问题都不存在,但是,一旦面临60lm/w以上的高发光功率LED的时候,就不得不需要想办法解决的,因为,热效应所带来的影响,绝对不会仅仅只有LED本身,而是会对整体应用產品带来困扰,所以,LED如果能够在这一方面获得解决的话,那么,也可以减轻应用产品本身的散热负担。

因此,在面对不断提高电流情况的同时,如何增加抗热能力,也是现阶段的急待被克服的问题,从各方面来看,除了材料本身的问题外,还包括从晶片到封装材料间的抗热性、导热结构、封装材料到PCB板间的抗热性、导热结构,及PCB板的散热结构等,这些都需要作整体性的考量。例如,即使能够解决从晶片到封装材料间的抗热性,但因从封装到PCB板的散热效果不好的话,同样也是造成LED晶片温度的上升,出现发光效率下降的现象。所以,就像是松下就为了解决这样的问题,从2005年开始,便把包括圆形,线形,面型的白光LED,与PCB基板设计成一体,来克服可能因为出现在从封装到PCB板间散热中断的问题。不过,并非所有的业者都像松下一样,把封装材料到PCB板间的抗热性都做了考量,因为各业者的策略关系,有的业者以基板设计的简便为目标,只针对PCB板的散热结构进行改良。

有相当多的业者,因为本身不生产LED的关係,所以只能在PCB板做一些研发,但仅此於止还是不够的,所以需要选择散热性良好的白光LED。能让PCB板上的用金属材料,能与白光LED封装中的散热槽紧密连接,完成让具有散热槽设计的高功率白光LED与PCB板连接,达到散热的能力。不过,这样看起来好像只是因为期望达到散热,而把简单的一件事情予以复杂化,到底这样是不是符合成本和进步的概念,以今天的应用层面来说,很难做一个判断,不过,实际上是有一些业者正朝向这方面做考量,例如Citizen在2004年所发表的產品,就是能够从封装上厚度为2∼3mm的散热槽向外散热,提供应用业者能够因为使用了具有散热槽的高功率白光LED,能让PCB板的散热设计得以发挥。

■封装材料的改变 提高白光LED寿命达原先的4倍

当然发热的问题不是只会对亮度表现带来影响,同时也会对LED本身的寿命出现挑战,所以在这一部份,LED不断的开发出封装材料来因应,持续提高中的LED亮度所产生的影响。过去用来作为封装材料的环氧树脂,耐热性比较差,可能会出现的情况是,在LED晶片本身的寿命到达前,环氧树脂就已经出现变色的情况,因此,为了提高散热性,而必须让更多的电流获得释放,这一个架构这是相当的重要。

除此之外,不仅因为热现象会对环氧树脂产生影样,甚至短波长也会对环氧树脂造成一些问题,这是因为白光LED发光光谱中,也包含了短波长的光线,而环氧树脂却相当容易被白光LED中的短波长光线破坏,即使低功率的白光LED就已经会让造成环氧树脂的破坏,更何况高功率的白光LED所含的短波长的光线更多,那么恶化自然也加速,甚至有些产品在连续点亮后的使用寿命不到5,000小时。

所以,与其不断的克服因为旧有封装材料-环氧树脂所带来的变色困扰,不如朝向开发新一代的封装材料,或许是不错的选择。目前在解决寿命这一方面的问题,许多LED封装业者都朝向放弃环氧树脂,而改採了硅树脂和陶瓷等作为封装的材料,根据统计,因为改变了封装材料,事实上可以提高LED的寿命。就资料上来看,代替环氧树脂的封装材料-硅树脂,就具有较高的耐热性,根据试验,即使是在摄氏150∼180度的高温,也不会变色的现象,看起来似乎是一个不错的封装材料。

因为硅树脂能够分散蓝色和近紫外光,所以与环氧树脂相比,硅树脂可以抑制材料因为电流和短波长光线所带来的劣化现象,而缓和的光穿透率下降的速度。所以,以目前的应用来看,几乎所有的高功率白光LED產品都已经改採硅树脂作为封装的材料,例如,因为短波长的光线所带来的影响部分,相对於波长400-450nm的光,环氧树脂约在个位的数百分比左右,但硅树脂对400∼450nm的光线吸收却不到百分之一,这样的落差,使得在抗短波长方面,硅树脂有著较出色的表现。


▲OSRAM「Thin GaN」是在InGaN层上形成金属膜,之后再剥离蓝宝石。这样,金属膜就会產生映射的效果而可以获得75%的光取出效率。(资料来源:OSRAM)

所以,就寿命表现度而言,硅树脂可以达到延长白光LED使用寿命的目标,甚至可以达到4万小时以上的使用寿命,但是,是不是真的适合用来做照明的应用就还有待研究,因为硅树脂是具有弹性的柔软材料,所以在封装的过程中,需要特别注意应用的方式,而来设计出最适当的应用技术。

对於未来应用的方面,提高白光LED的光输出效率将会是决胜的关键点。白光LED的生產技术,从过去的蓝色LED和黄色的YAG萤光体的组合,开发出模拟白光的目标,到利用三色混合或者使用GaN材料,开发出白光LED,对於应用来说,已经可以看的出将会朝向更广泛的方向扩展。

另外,白光LED的发光效率,这些年已经有了不错的的发展,日本LED照明推进协会目标是,期望能够预计在2009年达到100lm/w的发光效率,而事实上,有相当多的业者都在朝向这方面开发,所以预计在数年内,100lm/w发光效率就能够实际上商业化应用。


▲许多LED封装业者都朝向放弃环氧树脂,而改採了硅树脂和陶瓷等作为封装的材料,藉以提高LED的使用寿命。

■多元化应用市场潜力下 日亚化学积极开发白光半导体雷射

由於期望LED达到色纯度较高的白光,及高亮度的要求下,各业者不断的从每一领域加以改善,而达到此一目标,但在成果的进步速度上,看起来仍旧相当的缓慢。因此部分业者开始考虑採用其他的技术,来实现目前业界对於类似白光LED的光亮度要求。在高亮度的蓝、白光LED领域的日亚化学,便是将一部份的研发方向,朝向开发白光雷射做努力。

日亚化学是利用与白光LED相同的GaN系材料,来製作半导体雷射,开发出了白光光源,以目前的表现来说,辉度已经能够达到10cd/mm左右,今天的白光LED如果期望达到这个辉度值是相当困难的,即使增加电流期望让亮度增加,但这样将会使得接合点的温度上升,所带来的结果不仅会使整个发光效率降低外,还会浪费相当多不必要的电量。

日亚化学所开发的白光半导体雷射,在晶片端不再使萤光体材料,而是将发光部分和白光產生的部分分开处理,日亚化学的雷射半导体所是利用200mw的蓝紫色半导体雷射,发出405nm的波长光线,把蓝色或蓝紫色半导体雷射与光纤的面进行连接,让白光从涂了萤光体材料的光纤另一面发射出来,而在这模组中所產生出来的白光直径仅有1.25mm,这各面积只有相同光量白光LED的1/20,并因所需的耗功不到0.1W,所以,在散热部分也不需要太过於烦恼。

虽然看起来在特性的方面是相当的不错,不过实际上还是有一些缺点的,就像在使用寿命上,只有3,000小时左右,再加上价格太贵也是不容易解决事情,或许价格太贵的问题可以花一点时间就可以下降一些,但是以现在30万日圆的水準来看的,要降到3,000甚至300日圆,那就需要10年以上的时间。

责任编辑:
免责声明: 本文仅代表作者个人观点,与 OFweek半导体照明网 无关。其原创性以及文中陈述文字和内容未经本站证实, 对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅 作参考,并请自行核实相关内容。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

  • 照明设计
  • 照明结构
  • 照明工程
  • 猎头职位
更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: