侵权投诉
订阅
纠错
加入自媒体

深入分析LED光衰的重要原因

2009-12-22 15:38
木中君
关注


  2.LED伏安特性的温度特性

  虽然它的样子和一般二极管没有什么两样,但是最大的不同在于它的温度特性。其实所有二极管的伏安特性都有温度特性的问题,可是就是LED是需要特别加以注意的。这是因为:

  2.1 大功率LED的工作电流比较大,1W为0.35A,3-5W为0.7A,20W为1.05A,30W为1.75A,50W为3.5A。不过可能也会有人觉得,整流二极管的正向电流也可能达到这样大的数值的。

  2.2   LED因为目前的发光效率还是比较低,所以大部分的输入电功率都是转化为热,所以它的发热很高,假如散热器做得不好,那么结温就会升得很高。

  2.3   LED不同于整流二极管,它不是采用一般的硅材料做成的,而是采用特殊的材料(例如氮化镓)制成。所以它的伏安特性的温度特性也不同于一般二极管,而是要明显大于一般二极管。例如一般二极管的伏安特性的温度特性为-2mV/°C,但是Cree公司的XLamp7090XR-E的伏安特性的温度特性却高达-4mV/°C,要比一般的二极管大一倍。
 
  3.  由结温升高产生的问题

  3.1 LED结温升高以后首先带来的是光输出降低。

XLamp7090XR-E的相对光输出随结温的升高而降低

  图3. XLamp7090XR-E的相对光输出随结温的升高而降低


  3.2 结温升高引起伏安特性的左移
  因为伏安特性的温度系数是负的,这意味着温度升高,特性左移。例如,假定结温升高50度,那么伏安特性就会左移200mV。
 
  3.  采用恒压电源供电会使LED正向电流随温升的增加而增加。

  因为电源电压是恒定的,而伏安特性却左移了,其结果就是正向电流增加。从图2的伏安特性可以看出,假如常温下用3.3V的恒压电源供电,其正向电流为350mA;结温升高50度以后,伏安特性左移0.2V,那么相当于电源电压升高到了3.5V,这时候,正向电流就会增加到600mA。
 
  4.  采用恒压电源供电会引起温升增加的恶性循环

  正向电流增加以后,因为电源电压没有变化,所以LED的输入功率增加到3.3Vx0.6A=1.98W,
几乎增加了一倍。但从图3可以看出,结温升高以后,光输出会降低,这意味着更多的输入功率转换为热能,也就是说如果这时候增加正向电流,它的光输出并不随着增加,反而降低。所以,这时的正向电流的增加只会引起结温增加,而不会使光输出增加。

  所以,结温增加以后,正向电流增加,结温再增加,正向电流再增加,这就引起结温升高的恶性循环。

  结论:采用恒压电源供电会使结温升高,光衰加大,寿命缩短。

  所以,从前面的分析,可以得出这样的结论:采用恒压电源供电会使结温升高,而结温增加的结果就是光衰加大,寿命缩短。假定LED在常温25度时开机,开机以后结温就会升高,假定散热器设计为温升至75度,也就是结温增加了50度,那么就会使得正向电流增加至600mA。总功率从1.155W增加到1.98W,增加了0.825W。而这部分所增加的功率几乎全部转换为热量。假定原来LED的发光效率为30%,也就是70%的输入功率(0.8W)都转换为热能。现在又多了一倍的热能需要从散热器散出去。显然,这是原来的散热器设计没有考虑到的。这就使LED的结温又升高50度,变成了125度。我们回到图1来看光衰曲线,125度的光衰为14%的寿命也就差不多为1200小时,那么也就可以解释为什么一个精心设计的散热器,如果采用恒压电源供电,其结果仍然是光衰很大,寿命很短了!

  所以,给LED供电,一定要采用恒流电源供电,电流恒定以后,不管温度怎么变化,伏安特性如何左移,电流都不变!结温也就不会恶性循环了!(编辑:仰望星空)

<上一页  1  2  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号