???¨????
订阅
纠错
加入自媒体

白光LED及其应用详解 正逐步渗透到各细分市场

2016-06-27 00:43
棒棒书香
关注

  LED性能指标

  量子效率Quantum efficiency:材料内量子效率(IQE)为辐射的电子-空穴复合(即产生光子)数量与复合总量(辐射与非辐射)的比值。

  该指标决定了半导体材料发光效率。半导体LED性能通常使用外量子效率(EQE)表示,即IQE与提取效率的乘积。提取效率特指产生的光子中逃离LED的部分。EQE取决于直接影响IQE的半导体层缺陷和影响提取效率的器件构造。

  发光效率(Luminous efficacy):发光效率表示光源发射可见光辐射的效率,单位一般为lm W?1。光源以单色绿光(频率为4501012 Hz,对应波长约为555 nm,人类眼睛最敏感的光,图2b为相应的眼睛灵敏度曲线)转换100%电能,其最大发光效率达到683 lm W?1。

  照明用的白光源通常要求有比全部可见光波段更宽的发射光谱,因此其发光效率明显低于其最大值。电能转换成眼睛灵敏度曲线以外的辐射,无法用于照明,本应尽可能减小这类辐射。

  相关色温(Correlated colour temperature):用于比较不同照明技术的参比光源是处于热平衡的黑体辐射。根据普朗克辐射定律(Planck‘s law of radiation),黑体白炽灯的发射光谱取决于它的温度,相应于不同温度下辐射的色点用CIE图表示,即称之为普朗克轨迹(Planckian locus)的黑点曲线(图2f、h)。

  沿着普朗克轨迹的不同位置,白光的相关色温(CCT)大致可分为“暖白”(2,500-3,500 K)、“自然白”(3,500–4,500 K)、“冷白”(4,500–5,500 K)以及日光(5,500–7,500 K)。

  显色指数(Colour rendering index):显色指数(CRI)是一个无量纲的指标,描述白光源以一种相对于人类视觉感知而言准确且舒适的方式显色的能力,同时考虑参比光源(相同CCT下,黑体辐射在CCT《6,000 K或者自然光CCT》6,000 K条件下进行测试)。

  CRI通常被定义为8个测试颜色样本(R1-R8)的显色平均值,额定范围在0到100之间。对于高CRI采用额外的R9值,表示深红色。CRI=100意味着由测试光源发光的所有颜色样本都与参比光源发光的相同样本具有相同的颜色。

  白光LED及其他应用详解

  图1. 蓝光InGaN LED芯片的设计

  a.第一个蓝光InGaN/AlGaN LED示意图。

  b. 具有倒置结构以及无接触前表面的倒装LED芯片示意图。两个接触点被焊接在靠近LED的基板上。

  c. 最高水准的薄膜型倒装LED示意图及LED器件的俯视图。这三种示意图的有效层简化表示了双异质结构、单或多量子阱结构InGaN/AlGaN。

  过去20年,蓝光LED的EQE逐步提高,这也是不断降低GaN晶体结构缺陷密度的结果。出于成本效益的原因,这种材料通常生长于蓝宝石衬底上,然而二者存在着16%的晶格失配以及不同的热膨胀系数。这两个因素导致1,000℃附近MOVPE生长GaN过程中位错缺陷的产生。

  细致优化生长工艺可使缺陷保持在107~108 cm-2范围内,但需进一步提高其他LED应用的相同结构半导体的质量。虽然InGaN LEDs存在很高的缺陷密度,但其具有比其他低缺陷密度的宽带隙半导体二极管(如ZnSe)更高的效率,具体原因至今不明。

  另一个强烈影响LEDs提取效率以及内量子效率(IQE)提高的因素是器件的构造。图1a显示了外p-型GaN层,其具有相对较低的电导率,从而限制了器件中的空穴注入,但是这个瓶颈可通过覆盖整个p-GaN表面的更大p-型接触来克服。然而,电接触会阻碍输出光子。

  几种设计方案都可以解决这个问题,如图1b、c所示。倒装芯片(图1b)是指芯片倒置安装且p-和n-接触都在背后。这种构造提供更好的散热,获得更高的电流密度,从而使得每片芯片表面具有更高的光输出。蓝宝石在蓝光和绿光区域是透明的,并不妨碍发光。

  此外,接触部位可采用涂层(例如Ag)来反射那些向基座方向发射的光子。可采用薄膜芯片倒装法(图1c)进一步提升性能。从n-GaN层上讲基底移除,并将表面粗糙化,以提高光提取效率。据报道,结合材料以及构造的进展, ~444 nm处发光的InGaN LEDs在20 mA下EQE可达到84.3%。

  从蓝光到白光

  对于今天无处不在的白光LEDs而言,高效率蓝光发光二极管的发明具有里程碑意义。相对于传统光源,LEDs具有更高的能量效率,更重要的是可调节发光性能更好的适应不同的应用,例如舞台照明、建筑照明等等。

  一般来说,可通过几种不同方法获得白光LEDs。一种是组合发蓝光、绿光和红光的三个不同半导体LEDs(图2a左)。该方法最大的挑战在于绿光半导体的EQE相对较低(≈25%),限制了相应白光LED的发光效率(图2c)。InGaN与高含量铟形成的固溶体通常被用于直接发射绿光。基底与InGaN间的晶格失配度随铟含量的提高而增加,从而产生更高的缺陷密度。另外,描述原子核周围电子密度分布改变的量子力学Stark效应也随铟含量的提高而更加明显,从而降低绿光波段内的EQE。

  为了避免这一局限,基本上转换发光材料的绿光荧光转换LEDs(pc-LEDs)直接采用蓝光LED发射绿光,在商业产品中通常用以取代绿光半导体(图2a右,图2c)这种杂化LED典型的发光光谱如图2b所示。

  这些杂化产品(直接蓝光和红光加pc-绿光)的发光效率显著提高,且可获得高显色指数(CRI)值。由于红、绿、蓝(RGB)LEDs中三个独立发光体随时间的推移具有不同的光谱漂移,且具有不同的热降解率,使得其颜色稳定性较差。

  可独立控制RGB中每个通道的复杂且昂贵的电路需要补偿这个不想要的效应,所以这些构造在白光应用中的使用有限。对于功能照明以及物体和建筑照明而言,由额外电子元件提供混色功能(可动态改变输出色彩的基调)是非常有前景的。

  白光LED及其他应用详解

  图2. LED发射白光的不同方法

  a.白光LEDs示意图。左:三个直接发光LEDs(蓝光,InGaN;绿光,InGaN;红光,AlInGaP)。右:两个直接发光LEDs(蓝光,InGaN;红光,AlInGaP)和一个绿光pc-LEDs。

  b. 由直接发蓝光和红光的LEDs和一个绿光pc-LED组合而成的白光LED的发光光谱。灰色阴影谱线:人类眼睛灵敏度曲线。

  c. 半导体LEDs的外量子效率(EQE)。蓝色方块,InGaN基LEDs;红色三角形,AlInGaP基LEDs;绿色方块,绿光pc-LED。

  d. 白光pc-LED和涂层上转换发光材料的蓝光InGaNLED示意图。

  e. 具有宽带黄光荧光的白光pc-LED的发光光谱。

  f. 国际照明委员会(CIE,1931年)绘制的黑体曲线(实心黑点线)和CCT值。白色方块表示直接蓝光LED和黄色发光材料(YAG:Ce)的CIE颜色坐标。所有感知颜色都可沿着pc-LED的点线获得。

  g. CCT=2,700 K的pc-LEDs的发光光谱。黑线:窄带红光Sr[LiAl3N4]:Eu2+ LED(CRI=98,R9》90)。白色虚线:Sr[LiAl3N4]:Eu2+发光概括。紫色曲线:商用LED(CRI = 96,R9》80)。两个LEDs显示出了与2,700 K黑体辐射(黑色点划线)良好的匹配关系。而采用窄带红光材料的pc-LED在红外区域的溢出(黑色的向下箭头)明显减小。

  h. CIE图。白色方块表示直接蓝光LED、黄色发光材料(YAG:Ce)、额外红色荧光的CIE颜色坐标(Sr[LiAl3N4]:Eu2+)。Pc-LED添加混合可获得所有的颜色,用三角形表示。在此,可获得黑体曲线(黑色实线)的几乎所有CCT值。

  根据混色原理(图2d),基于pc-LED策略提供白光的一个简单方法是结合单个蓝光InGaN芯片和一个或多个可见光区的发光材料。遵循这一策略,早在1996年由Nichia开发的第一款商业化白光pc-LEDs就使用Ce3+掺杂的石榴石材料(如Y3?xGdxAl5?yGayO12:Ce3+(YAG:Ce))来发射宽谱黄光(图2e、f)。只使用单一的荧光,限制了CRI《75光源在冷白光和日光范围内(相关色温CCT=4,000-8,000 K)的性能。然而,接近理论极限的高转换效率令这些器件成为那些要求具有与日光相媲美CCT值(~6,400 K)汽车前灯的重要组成部分。

  理想自然色彩感知度的照明应用首选更低的CCT值(2,00-4,000 K)和更高的CRIs》80。使用两个或两个以上发光材料(例如,绿光至黄光的LuAG:Ce或YAG:Ce结合红光(Ba,Sr)2Si5N8:Eu2+或(Sr,Ca)AlSiN3:Eu2+)更容易实现这些参数。调整这些材料的比例,可以获得接近于黑体辐射的覆盖整个可见光区的连续发射光谱(图2g、h)。然而,CRI》90的高光质量(通常用于需要最自然色彩的博物馆、医疗室、零售商店等)通常以牺牲发光效率为代价。考虑到人眼视觉灵敏度曲线(图2b),650 nm以后的光子很弱,造成发光效率的巨大损失。因此,相比于更注重红光部件的pc-LED,可通过精细调节发光材料发射光谱的位置和宽度使得pc-LED更好的适应视觉感知(同时也具有更高的发光效率)。

<上一页  1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

??????°?±? 44030502002758??