侵权投诉
订阅
纠错
加入自媒体

碳化硅基氮化镓GaN-on-SiC为 5G 铺平道路

5G 发射机要求

上述射频前端技术规格对 5G 发射机,特别是与 mMIMO 天线系统一起使用的 5G 发射机提出了实质性的限制。这就是为什么有广泛的研究和行业投入,以开发能够在 5G 运行条件下和新的 5G 频谱范围内,满足这些严格要求的功率放大器技术。传统的功率放大器技术,如横向扩散金属氧化物半导体 (LDMOS) 和砷化镓 (GaAs) 功率放大器技术,无法满足 5G mMIMO 系统所需的功率密度、能源效率、线性和成本/空间要求。

以砷化镓放大器为例,这些器件非常适合低噪声的接收机应用,但带隙电压较低。这意味着砷化镓放大器必须要有较低的工作电压,这也就使得实现高功率密度充满挑战性,而且砷化镓放大器在更高功率下的效率较低。其结果就是一个更热的且相对更耗电的器件。这对于需要更高功率密度和更高能源效率水平的 5G mMIMO 应用来说就不那么有吸引力了。

尽管 LDMOS 放大器在 3 GHz 以下高功率应用中已经得以采用了一些时间,但是 LDMOS 放大器的导热性相对有限,在更高频率下的效率也相对更低。最终,这导致了 LDMOS 放大器在超过 3 GHz 频率上消耗更多的功率和产生更多的热量,同时也牺牲了其他需要被考虑的因素,如线性和噪声(与大多数材料的温度有关)。

这就为氮化镓半导体材料来填补空白留出了很大的发挥空间。对于氮化镓技术在射频中的应用已经有很多宣传了。在许多方面,氮化镓器件使得从远程通信到雷达等各种设备的性能显着提高。这是因为氮化镓在功率放大器品质因数 (PAFOM) ,即功率密度、可靠性、导热系数、线性度和带宽等方面通常优于大多数其他常见的半导体材料。

氮化镓半导体有一些细微的差别,因为氮化镓通常是在绝缘衬底上进行外延生长。因此,氮化镓器件可以基于多种不同衬底,如蓝宝石、硅、碳化硅、氮化镓,甚至是钻石。由于工艺成熟度、成本和其他设计限制,广泛可用的射频用氮化镓通常包括硅基氮化镓或碳化硅基氮化镓。

与氮化镓在高频率射频应用上优于硅基 LDMOS 器件的原因大致相同,在 5G mMIMO 应用中,碳化硅基氮化镓优于硅基氮化镓。碳化硅基氮化镓相对于硅基氮化镓的许多性能优势源于碳化硅是一种更稳固耐用的材料,具有更好的导热性,与氮化镓有更好的晶格匹配。这意味着在高负载条件下,碳化硅基氮化镓器件比之硅基氮化镓器件,在运行时更耐热,损耗更少,而且具有更高的功率效率。而且,这意味着对于相同的功率输出,碳化硅基氮化镓功率放大器可能比硅基氮化镓器件尺寸更小,其所需要的散热器尺寸也更小。不仅如此,碳化硅基氮化镓的可靠性还通过了美国国防部 (DoD) 和航空航天应用的全面审核和认可。

小结

4G 和 5G 系统的部署很可能会采用 mMIMO 技术,为对现代通信服务抱有更高期望的用户提供最佳覆盖范围和容量。与硅基氮化镓和 LDMOS 技术相比,碳化硅基氮化镓功率放大器技术为 mMIMO 系统提供了最佳的性能和成本要求。Wolfspeed 碳化硅基氮化镓技术已被批准用于高可靠性电信、军事、国防和航空航天应用,并提供比硅基氮化镓和 LDMOS 更低的全生命周期成本。

关于科锐

科锐是Wolfspeed功率和射频(RF)半导体、照明级LED的创新者。科锐Wolfspeed产品组合包括了碳化硅(SiC)材料、功率器件、射频器件,广泛应用于电动汽车(EV)、快速充电、逆变器、电源、电信、军事、航空航天等领域。科锐LED产品组合包括了蓝光和绿光LED芯片、高亮度LED和照明级大功率LED,广泛应用于室内和户外照明、显示屏、交通、特种照明等领域。

<上一页  1  2  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

半导体照明 猎头职位 更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号