侵权投诉
订阅
纠错
加入自媒体

量子点材料的研究现状及在光致发光和电致发光领域的应用

量子点的电致发光器件

由于量子点的窄带宽发射,应用量子点的电致发光器件尤其是大尺寸商用主动量子点显示有望超越OLED成为最具有前景的显示技术。其中量子点发光二极管(QLED)作为量子点主动显示中最基本的单元,近些年已经被广泛研究,以获得更好的色彩质量和效率,并且整体性能在过去几年中得到了稳步提高。而OLED显示的发展为量子点电致发光显示打下了坚实的基础,加上印刷显示的进步,更一进步促进了这一领域的进步。

QLED器件构造及发展

QLED是由注入的电子和空穴通过量子点内的辐射复合转换成光子的器件,它和OLED一样,都是主动发光器件,代表了量子点用于发光技术的下一个阶段。外部量子效率是表征主动发光器件的性能的一个重要的标准,其值等于发射的光子和注入的电荷数的比值。近几年的发展使得QLED器件外量子效率得到很大提升,尤其在以cdse为主的器件。2013年,QD Vision报道的最大的红光QLED的外量子效率已经达到了18%,已经超过了OLED器件的最大效率;2014年,samsung同样报道了绿光的外量子效率达到了12.6%;蓝光的效率也得到了很大提升,2018年,Wang等报道的已经达到了18%。QLED器件效率的提升突出了其未来的前景。到目前为止,已经有很多研究针对整个QLED的器件进行结构的优化,包括核/壳量子点材料的选择和界面的合金化以减少表面缺陷和抑制俄歇过程、表面配体的设计和优化电荷传输层的设计等,以提高其外量子效率并延长寿命。

多数的QLED器件的研究都使用核/壳结构的量子点,其被证明具有优异的性能。壳层能够很好地保护量子点,减少表面缺陷并提高量子产率,明显地抑制非辐射跃迁;壳层同样被证明能够减少在量子点薄膜中的Foster能量转移过程,通过增加壳层厚度减少了偶极共振,从而提高了量子点薄膜的量子产率。纯闪锌矿相的cdse/cds量子点制作的OLED器件已经被证明在红光部分具有优异的性能,但是由于cdse和cds电子结构的相似性,这种结构只有在橙色到红色的长波长部分具有优异的性能;Zns由于和cdse的电子结构相差较多,被广泛用于调节量子点的荧光性质,且其发光通常是由cdse的尺寸决定。但由于cdse和Zns的晶格失配约为12%造成了界面处的应力集中,因此形成了内在的缺陷能级,量子产率低于cdse/cds量子点。为了释放晶格应力,通过核/壳之间引入合金的界面,同时能够减少非辐射跃迁,提高量子产率。在这个结构中,能尽量减少具有毒性的cd元素,电子和空穴被限域在核/合金内部,提供了更多可调谐的颜色;合金的界面还能提供一个渐变的势垒,从而提高电子/空穴的注入,提高了QLED器件的效率。

量子点的表面配体影响了量子点的性质。在QLED器件中,配体会影响量子点膜内量子点的表面缺陷和电荷传输;同时,配体-配体之间的偶极矩作用也会影响量子点层的电子结构。表面配体化学的发展使得可以替换量子点的表面配体以设计不同的QLED器件。

QLED器件工作时需要注入电子和空穴,最简单的QLED器件由阴极、电子传输层、量子点层、空穴传输层和阳极组成。在QLED器件中,量子点薄膜夹在电荷传输层中间,当正向偏压加到QLED器件两端时,电子和空穴分别通过电子传输层和空穴传输层进入量子点发光层;同时存在两个过程:直接注入和通过有机分子的能量传输。电荷传输层不仅影响了电荷注入效率,同时也对QLED的工艺提出了要求,影响了外部量子效率。电子-空穴的不平衡注入不仅仅会减少注入的电荷转化为激子的能力,也会使得电荷在QLED器件内累积,增加了带电激子的非辐射跃迁,使得效率降低和使用寿命衰减。QLED中有效的激子形成需要具有良好阻挡性能的电荷传输层,以实现QD层内的有效电荷限制以及对电子注入和空穴注入的合理调制以实现电荷平衡。同时,电荷传输层的厚度也会给整个器件带来影响,主要是电场对量子点的荧光性质会产生很大影响,例如场致荧光猝灭,这也是QLED器件效率不高的一个原因。电子传输层和空穴传输层的优化一直伴随着QLED的发展。目前,绝大多数的QLED仍然以Zno为基础研究电子传输层,而空穴传输层往往使用有机的材料进行研究。

量子点主动显示—超越OLED的显示未来

OLED显示现在发展迅猛,以色彩鲜艳、对比度高、响应速度快等特点,已经占领了显示领域一个非常重要的地位。通过溶液处理的QLED的器件,其电学性能已经和OLED相当。在已经报道的使用主动矩阵QLED显示(Active matrix QLED,简称AM-QLED)器件中,其色域已经达到140% ntsc标准,超越了OLED显示最大的显示范围。随着QLED器件的研究进展迅速,其外部量子效率逐步提升以及器件稳定性逐渐提高,和以溶液为基础的印刷显示的进步,量子点色纯度和色彩饱和度更高,使得AM-QLED显示技术有望超越OLED显示,尤其是在大面积的曲面显示和柔性显示上。

虽然AM-QLED显示是由QLED为基础单元,但是其构造方法不能等同于QLED一样用旋涂的方法。和OLED显示一样,整个的显示屏是由一个个像素组成,旋涂的方法显然不适合,而且旋涂往往会损失很多量子点。用于高分辨率、高对比度和适用于各种衬底(柔性沉底和可拉伸衬底)的先进的构造技术是必须的。目前,使用墨水打印和转移打印的图形化打印技术逐渐成熟,促进了量子点显示的进步。

喷墨打印可以对预定义的图案进行简单的沉积,并且按需滴落,材料成本将大大降低;其在基板上的预定义区域上沉积微量量子点,具有微米精度。一个典型喷墨打印的全色显示器件中,其电极和像素点分别通过打印银纳米颗粒和发光材料构成。喷墨打印的方法很简单,即通过喷墨打印机,将衬底机械地定位在打印头正下方的液滴产生处,然后通过施加不同的电压,墨水可以被精确地打印到衬底上。当墨水太粘稠时,需要大的压力脉冲来产生液滴;另一方面,当油墨的表面张力太低时,除了打印头下面的所需液滴外,还会产生咖啡环,极大地影响了其显示的分辨率。由于量子点可溶于溶液,可通过喷墨打印直接获取RGB像素化的图像,在这个过程中,需要考虑两个关键问题才能获得厚度可控的均匀量子点薄膜。一方面,要避免器件处理过程中的量子点重新溶解,喷墨印刷工艺需要具有可控溶液性质(例如浓度,表面张力和粘度)的墨水,这为量子点油墨配制带来了额外的困难;另一方面,尽量减少咖啡环效应,从而提高分辨率。

转移打印是一种简单且低成本的表面图案化方法,具有高通用性和亚微米级精度。这种方法的关键在于使用软质和弹性体印模来复制由光刻或其他图案化技术产生的图案。这个过程一般包括两部,分别是将量子点旋涂到施主衬底上然后将量子点层转移到受主衬底,这样就可以产生多色发光的QLED模块。转移打印可以实现量子点的高分辨率图案化,而且不会将器件结构暴露于溶剂。因此转移打印在选择设备组件和设备制造方面提供了更多的灵活性。尽管如此,这个过程仍然存在很多问题,例如转印过程中的污染,亚像素的分离以及施主或受主结构的下垂和倾斜,都需要通过进一步改进。

图 4 AM-QLED显示构造方式(a)喷墨打印(b)转移打印示意图

<上一页  1  2  3  4  下一页>  余下全文
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

半导体照明 猎头职位 更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号